Redundancy between nucleases required for homologous recombination promotes PARP inhibitor resistance in the eukaryotic model organism Dictyostelium

نویسندگان

  • Anna-Lena Kolb
  • Alasdair R. Gunn
  • Nicholas D. Lakin
چکیده

ADP-ribosyltransferases promote repair of DNA single strand breaks and disruption of this pathway by Poly(ADP-ribose) polymerase (PARP) inhibitors (PARPi) is toxic to cells with defects in homologous recombination (HR). Here, we show that this relationship is conserved in the simple eukaryote Dictyostelium and exploit this organism to define mechanisms that drive resistance of the HR-deficient cells to PARPi. Dictyostelium cells disrupted in exonuclease I, a critical factor for HR, are sensitive to PARPi. Deletion of exo1 prevents the accumulation of Rad51 in chromatin induced by PARPi, resulting in DNA damage being channelled through repair by non-homologous end-joining (NHEJ). Inactivation of NHEJ supresses the sensitivity of exo1- cells to PARPi, indicating this pathway drives synthetic lethality and that in its absence alternative repair mechanisms promote cell survival. This resistance is independent of alternate-NHEJ and is instead achieved by re-activation of HR. Moreover, inhibitors of Mre11 restore sensitivity of dnapkcs-exo1- cells to PARPi, indicating redundancy between nucleases that initiate HR can drive PARPi resistance. These data inform on mechanism of PARPi resistance in HR-deficient cells and present Dictyostelium as a convenient genetic model to characterize these pathways.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Progression through mitosis promotes PARP inhibitor-induced cytotoxicity in homologous recombination-deficient cancer cells

Mutations in homologous recombination (HR) genes BRCA1 and BRCA2 predispose to tumorigenesis. HR-deficient cancers are hypersensitive to Poly (ADP ribose)-polymerase (PARP) inhibitors, but can acquire resistance and relapse. Mechanistic understanding how PARP inhibition induces cytotoxicity in HR-deficient cancer cells is incomplete. Here we find PARP inhibition to compromise replication fork s...

متن کامل

PARP regulates nonhomologous end joining through retention of Ku at double-strand breaks

Poly adenosine diphosphate (ADP)-ribosylation (PARylation) by poly ADP-ribose (PAR) polymerases (PARPs) is an early response to DNA double-strand breaks (DSBs). In this paper, we exploit Dictyostelium discoideum to uncover a novel role for PARylation in regulating nonhomologous end joining (NHEJ). PARylation occurred at single-strand breaks, and two PARPs, Adprt1b and Adprt2, were required for ...

متن کامل

Loss of 53BP1 causes PARP inhibitor resistance in Brca1-mutated mouse mammary tumors.

UNLABELLED Inhibition of PARP is a promising therapeutic strategy for homologous recombination-deficient tumors, such as BRCA1-associated cancers. We previously reported that BRCA1-deficient mouse mammary tumors may acquire resistance to the clinical PARP inhibitor (PARPi) olaparib through activation of the P-glycoprotein drug efflux transporter. Here, we show that tumor-specific genetic inacti...

متن کامل

Genetic analysis of homologous recombination in Archaea: Haloferax volcanii as a model organism.

Homologous recombination is a fundamental cellular process that rearranges genes both within and between chromosomes, promotes repair of damaged DNA and underpins replication. Much of our understanding of recombination stems from pioneering studies of bacterial and eukaryotic systems such as Escherichia coli and Saccharomyces cerevisiae. Since most archaeal species are extremophilic and difficu...

متن کامل

6-thioguanine selectively kills BRCA2-defective tumors and overcomes PARP inhibitor resistance.

Familial breast and ovarian cancers are often defective in homologous recombination (HR) due to mutations in the BRCA1 or BRCA2 genes. Cisplatin chemotherapy or poly(ADP-ribose) polymerase (PARP) inhibitors were tested for these tumors in clinical trials. In a screen for novel drugs that selectively kill BRCA2-defective cells, we identified 6-thioguanine (6TG), which induces DNA double-strand b...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 45  شماره 

صفحات  -

تاریخ انتشار 2017